English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Preliminary analysis and evaluation of BDS-2/BDS-3 precise point positioning

Authors

Chen,  Hua
External Organizations;

Liu,  Xuexi
External Organizations;

Jiang,  Weiping
External Organizations;

/persons/resource/pyuan

Yuan,  Peng       
0 Pre-GFZ, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Ju,  Boxiao
External Organizations;

Chen,  Yan
External Organizations;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Chen, H., Liu, X., Jiang, W., Yuan, P., Ju, B., Chen, Y. (2021): Preliminary analysis and evaluation of BDS-2/BDS-3 precise point positioning. - Advances in Space Research, 68, 10, 4113-4128.
https://doi.org/10.1016/j.asr.2021.07.044


Cite as: https://gfzpublic.gfz.de/pubman/item/item_5022698
Abstract
Precise point positioning (PPP) is a very important function of satellite navigation system. In this contribution, the combination of BDS-2 and BDS-3 PPP is researched. To begin with, the frequency and application of BDS-2 and BDS-3 are introduced. Then, the principle of BDS-2 and BDS-3 combined PPP, the generation and estimation method of inter-system bias (ISB) are elaborated. Finally, the global satellite visibility of BDS-2 and BDS-3, the global Position Dilution of Precision (PDOP) value and the results of BDS-2/BDS-3 PPP are analyzed based on the 51-day data of 30 stations from multi-GNSS experiment (MGEX) network in 2020. The experimental results show that: (1) The number of visible satellites of BDS-2 in Asia Pacific region is 8–15, while the number of visible satellites in most parts of the western hemisphere is less than 4; the number of visible satellites of BDS-3 in the eastern hemisphere is 8–14, while the number of visible satellites in the western hemisphere is 7–11; BDS-3 is more evenly distributed in the world than BDS-2, but the number of satellites in the eastern hemisphere is also slightly more than that in the western hemisphere. (2) The root mean square (RMS) of BDS-2/BDS-3 static PPP in the East (E), North (N) and Up (U) directions are 1.0 cm, 0.6 cm and 1.7 cm respectively; the positioning accuracy of BDS-2/BDS-3 PPP in the E, N and U directions are improved by 16.7%, 14.3% and 10.5% respectively compared with BDS-3 PPP. The RMS of BDS-2/BDS-3 kinematic PPP in the E, N and U directions are 2.0 cm, 1.3 cm and 4.1 cm respectively; the positioning accuracy of BDS-2/BDS-3 PPP in the E, N and U directions are improved by 33.3%, 38.1% and 29.3% respectively compared with BDS-3 PPP. (3) Compared with BDS-3 static PPP, the convergence time of BDS-2/BDS-3 are shortened by 6.1%, 11.5%, 10.1% and 10.3% in the E, N, U and three dimensional (3D) directions respectively. Compared with BDS-2, the convergence time of BDS-3 is shortened by more than 50%. The convergence time of BDS-2/BDS-3 kinematic PPP in the E, N, U and 3D directions is shorter than BDS-3 by 31.1%, 43.8%, 38.1% and 34.6% respectively; the convergence time of BDS-3 is shorter than BDS-2 by 61.1%, 59.7%, 60.9% and 57.1% respectively. In brief, the success of BDS-3 global networking has greatly promoted the positioning performance of the entire BDS system.