English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Hydrometeorological processes and controls of the upper-tail floods over China

Authors

Yang,  Long
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Yang, L. (2023): Hydrometeorological processes and controls of the upper-tail floods over China, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-0297


Cite as: https://gfzpublic.gfz.de/pubman/item/item_5016172
Abstract
Characterizing the upper tail of flood peak distributions remains a challenge due to the elusive nature of extreme floods, particularly the key elements of flood-producing storms that are responsible for them. Here I examine the upper tail of flood peaks over China based on a comprehensive flood dataset that integrates systematic observations from 1759 stream gaging stations and 14,779 historical flood surveys. I show that flood peak distributions over China are associated with a mixture of rainfall-generation processes. The storms for the upper-tail floods (with recurrence interval beyond 50 years) are characterized with anomalous moisture transport and/or synoptic configurations, with respect to those responsible for annual flood peaks. Anomalous moisture transport (in terms of intensity, pathways, and durations) dictates the space-time rainfall dynamics (relative to the drainage networks) that subsequently lead to anomalous basin-scale flood response. I provide physical insights into extreme flood processes based on downscaling simulations using the Weather Research and Forecasting model driven by the 20th Century Reanalysis fields. Modeling analyses for a collective of extreme flood events highlight the role of interactions between complex terrain and large-scale environment in determining the spatial and temporal variability of extreme rainfall. My analyses contribute to improved understanding of the unprecedented flood hazards over China by establishing the nexus between atmospheric processes and basin-scale flood response. These knowledge gains can be potentially used to the upper tail of flood peak distributions.