???ENUM_LANGUAGE_JA???
 
???mainMenu_lnkPrivacyPolicy??? ???mainMenu_lnkPolicy???

???ViewItemPage???


???ENUM_STATE_RELEASED???

???ENUM_GENRE_ARTICLE???

Timing of meteoric-water incursion controls the scale of tin mineralization

???ViewItemOverview_lblSpecificAuthorsSection???

Liu,  Peng
External Organizations;
GFZ SIMS Publications, GFZ Helmholtz Centre for Geosciences;

Lehmann,  Bernd
External Organizations;
GFZ SIMS Publications, GFZ Helmholtz Centre for Geosciences;

Holtz,  Francois
External Organizations;
GFZ SIMS Publications, GFZ Helmholtz Centre for Geosciences;

Weyer,  Stefan
External Organizations;
GFZ SIMS Publications, GFZ Helmholtz Centre for Geosciences;

Cook,  Nigel J.
External Organizations;
GFZ SIMS Publications, GFZ Helmholtz Centre for Geosciences;

/persons/resource/mariro

Scicchitano,  Maria Rosa       
3.1 Inorganic and Isotope Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, GFZ Helmholtz Centre for Geosciences;
GFZ SIMS Publications, GFZ Helmholtz Centre for Geosciences;

Kirkland,  Christopher L.
External Organizations;
GFZ SIMS Publications, GFZ Helmholtz Centre for Geosciences;

Li,  Xiaoyan
External Organizations;
GFZ SIMS Publications, GFZ Helmholtz Centre for Geosciences;

Bao,  Zhian
External Organizations;
GFZ SIMS Publications, GFZ Helmholtz Centre for Geosciences;

Cui,  Zexian
External Organizations;
GFZ SIMS Publications, GFZ Helmholtz Centre for Geosciences;

/persons/resource/fwilke

Wilke,  Franziska       
3.1 Inorganic and Isotope Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, GFZ Helmholtz Centre for Geosciences;
GFZ SIMS Publications, GFZ Helmholtz Centre for Geosciences;

Yuan,  Honglin
External Organizations;
GFZ SIMS Publications, GFZ Helmholtz Centre for Geosciences;

Mao,  Jingwen
External Organizations;
GFZ SIMS Publications, GFZ Helmholtz Centre for Geosciences;

???ViewItemOverview_lblExternalResourceSection???
???ViewItemOverview_noExternalResourcesAvailable???
???ViewItemOverview_lblRestrictedFulltextSection???
???ViewItemOverview_noRestrictedFullTextsAvailable???
???ViewItemOverview_lblFulltextSection???
???ViewItemOverview_noFullTextsAvailable???
???ViewItemOverview_lblSupplementaryMaterialSection???
???ViewItemOverview_noSupplementaryMaterialAvailable???
???ViewItemOverview_lblCitationSection???

Liu, P., Lehmann, B., Holtz, F., Weyer, S., Cook, N. J., Scicchitano, M. R., Kirkland, C. L., Li, X., Bao, Z., Cui, Z., Wilke, F., Yuan, H., Mao, J. (2025 online): Timing of meteoric-water incursion controls the scale of tin mineralization. - Geochimica et Cosmochimica Acta.
https://doi.org/10.1016/j.gca.2025.10.032


???ViewItemOverview_lblCiteAs???: https://gfzpublic.gfz.de/pubman/item/item_5037008
???ViewItemOverview_lblAbstractSection???
Tin (Sn) is critical for advanced technologies, yet the fundamental mechanisms involved in generations of large-scale mineralization are poorly understood. Here we combine in situ Sn and oxygen (O) isotope analysis of cassiterite from the multiphase granites of the Cretaceous Mikengshan Sn district, South China, to better constrain the key factors in Sn ore formation. Petrological imaging and trace-element compositions of different types of cassiterite indicate that they crystallized from distinct pulses of exsolved magmatic fluids. Cassiterite O isotope compositions imply that these fluids had up to 50% meteoric water. Corresponding Sn isotopes define a trend in which δ124Sn decreases from early to late cassiterite, indicating a redox-controlled mechanism for cassiterite formation. Furthermore, the variable but relatively elevated δ124Sn values in cassiterite are explained through a combination of vapor- and redox-controlled isotope fractionation. These findings suggest that post-magmatic meteoric–water incursion during progressive cooling of shallow granitic intrusions leads to oxidation. This process plays a key role in the redistribution of Sn and thus the formation of large-scale deposits, suggesting that the timing of meteoric-water incursion is a key control on the scale of Sn mineralization. Combining traditional and non-traditional metal isotope systematics, measured in situ on the same sample material, proves invaluable for unraveling and quantifying unrecognized details in the evolution of magmatic–hydrothermal systems.