English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Impact of evaporation in Yangtze river valley on heat stress in north China

Bu, L., Zuo, Z. (2023): Impact of evaporation in Yangtze river valley on heat stress in north China, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-0201

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Bu, Lulei1, Author
Zuo, Zhiyan1, Author
Affiliations:
1IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations, ou_5011304              

Content

show
hide
Free keywords: -
 Abstract: In North China (NC), heat stress, which can be quantitatively characterized by wet-bulb globe temperature (WBGT), is closely related to specific humidity. This study focuses on the total days for NC averaged daily maximum WBGT exceeding 26°C (WGBT26) per summer (June to August) from 1979 to 2017. Rather than local precipitation or evaporation in NC, the NC WBGT26 is significantly related to the nonlocal evaporation around the Yangtze River Valley (YR). The abnormal positive evaporated water vapor in YR, associated with anomalously high water vapor flux from south to north at 925 hPa, is continuously transported to NC in the above-normal WBGT26 years. Such an abnormal “evaporation and transportation” process can significantly increase the water vapor in NC and therefore enhance WBGT26. The evaporation in YR peaks in mid to late July and is closely associated with the occurrence days for daily maximum WBGT exceeding 26°C and maximum daily mean specific humidity at 925 hPa in summer. The main driver for the strongest YR evaporation anomaly from July 15th to August 15th is the simultaneous surface air temperature rather than the simultaneous or earlier soil moisture, precipitation, and vapor pressure deficit (VPD) anomaly. This condition is due to the continuously abundant soil moisture in the YR from April to September. The results of this study provide new ideas for studying heat stress in NC, indicating that nonlocal land-atmosphere interactions are crucial.

Details

show
hide
Language(s): eng - English
 Dates: 2023
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.57757/IUGG23-0201
 Degree: -

Event

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Place of Event: Berlin
Start-/End Date: 2023-07-11 - 2023-07-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: Potsdam : GFZ German Research Centre for Geosciences
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -